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This handout summarizes the lectures slides. Please note that the handout is not very
useful if you do not attend the class. The handout is also not a substitution for the book.
The course is built around Martin Huber book: “Causal analysis: Impact evaluation and
Causal Machine Learning with applications in R”.

Homepage: http://www.igorasanov.com/teaching.html
Literature:

! Huber, M., 2023. Causal analysis: Impact evaluation and Causal Machine Learning
with applications in R. MIT Press.

� Efron, B. and Hastie, T., 2021. Computer age statistical inference, student edition:
algorithms, evidence, and data science (Vol. 6). Cambridge University Press.

� Tibshirani, R.J. and Efron, B., 1993. An introduction to the bootstrap. Monographs
on statistics and applied probability, 57(1).

� Course: Causal Inference with Machine Learning by V. Chernozhukov.

Software:
We will use R for most of the exercises: Here is the link on the homepage of R.
In the class I use RStudio as a front end and I would recommend you to install it too -

it greatly simplifies workflow in R.
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1 Introduction to Machine Learning

1.1 Motivation

� Econometrics, inferential statistics

– X̄ = 239

– Reject the the null-hypothesis that µ = 0 and calculating the confidence intervals
based on our estimations.

– β is good estimator of relation between x and y

� However, what we often want is to predict certain event.

– We want to predict that the letter is spam

– What will person look next on Youtube

– There will be a flu outbreak soon

– Will be this teacher good based on his CV

1.1.1 Motivation: Spam Example

Dear Valentine,
you won this year.
Your money is waiting for you.
Just send us your bank account.
Best,
Valencia.
Dear‖ Valentine‖,‖
you‖ won‖ this‖ year‖.‖
Your‖ money ‖ is ‖ waiting ‖ for ‖ you ‖ .‖
Just‖ send‖ us‖ your‖ bank ‖ account‖.‖
Best‖,‖
Valencia‖.

Frequency of ‖your‖
f = 2/20 = 0.1

library(kernlab)

data(spam)

require(stargazer)

stargazer(head(spam[, c(1, 2, 21, 24, 58)]), summary = FALSE)
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Table 1

make address your money type

1 0 0.640 0.960 0 spam
2 0.210 0.280 1.590 0.430 spam
3 0.060 0 0.510 0.060 spam
4 0 0 0.310 0 spam
5 0 0 0.310 0 spam
6 0 0 0 0 spam

Histogram of word |your| based on type

Frequency of word |Your| in letter (%)
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prediction <- ifelse(spam[, "your"] > 1, "spam", "nonspam")

t <- table(prediction, spam[, "type"])/length(prediction)

require(xtable)

xtable(t * 100)

nonspam spam
nonspam 51.51 16.13

spam 9.08 23.28

Accuracy-correct predictions
≈52+23=75%

1.2 In and Out of Sample Predictions

� In sample errors – the error rate on the same data set you used.

� Out of Sample error – the error rate you get on new data set.
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� Key points:

– We care about out of sample prediction

– In sample error < out of sample error

– In sample overfitting can occur

� Let’s take a small sample from our data set.

set.seed(239)

require(dplyr)

s100 <- sample_n(spam, 100)

prediction <- ifelse(s100[, "your"] > 1, "spam", "nonspam")

t <- table(prediction, s100[, "type"])/length(prediction)

require(xtable)

xtable(t * 100)

nonspam spam
nonspam 48.00 14.00

spam 12.00 26.00

Accuracy-correct predictions
≈ 48 + 26 = 74%

� What about other variables?

Histogram of word |Money| based on type

Frequency of word |Money| in letter
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prediction<-ifelse(s100[,"your"]>1,"spam",

ifelse(s100[,"money"]>0,

"spam","nonspam"))

t<-table(prediction, s100[,"type"])/length(prediction)

require(xtable)

xtable(t*100)

nonspam spam
nonspam 48.00 9.00

spam 12.00 31.00

Accuracy-correct predictions
≈ 48 + 31 = 79%

� But what about out applying this rule to the whole dataset?

prediction<-ifelse(spam[,"your"]>1,"spam",

ifelse(spam[,"money"]>0.2, "spam","nonspam"))

t<-table(prediction, spam[,"type"])/length(prediction)

require(xtable)

xtable(t*100)

nonspam spam
nonspam 50.88 13.98

spam 9.72 25.43

Accuracy-correct predictions
≈ 51 + 25 = 76%

1.3 Prediction Study Design

� Define error rate e.g. Accuracy

� Split data into:

– Training, Test, Validation data set

� Pick features (variables) and model on training set

– Use Cross-validation

� Apply to test data set (once)

� Apply on validation data set

� Sensitivity – TP / (TP+FN)
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Table 2: Error Types

Predicted
Spam Not spam

Actual
Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

� Specificity – TN / (FP+TN)

� Positive Predictive Value – TP / (TP+FP)

� Negative Predictive Value – TN / (FN+TN)

� Accuracy – (TP+TN)/ (TP+FN+TN+FP)

� We estimate the model on the training set e.g. random 60% of sample

� We test the model on test data set and refine it e.g. calculate sensitivity of the model

� We apply model model on validation data set.

Can we do this multiple times?

1. Use training set

2. Split it again intro training/test set

3. Build a model on training set

4. Evaluate on test set

5. Repeat from 1 to 4 n times.

6. Estimate average errors e.g. Mean Squared Error=
∑

(yi−ŷi)2
n

� It allows:

– Pick up features(variables)

– Select model

– Parameters of Prediction function

How to split training/test set?

� Random sampling without replacement.

– Alternative: Random sampling without replacement, bootstrap. (needs correc-
tion)

� K-fold cross validation.

– Devide data set in K parts. (Needs to carefully choose K)

How to build a model and select variables?

� OLS

� Lasso Regression

� Trees

� Random Forest

� Neural networks

� . . .
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1.4 Random Forest

� Recall Spam example

– We can base our prediction on word ‖your‖
– Then we can use word ‖money‖
– . . .

– We build a decision tree till the groups are very small

prediction <- ifelse(s100[, "your"] > 1, "spam", "nonspam")

prediction<-ifelse(spam[,"your"]>1,"spam",

ifelse(spam[,"money"]>0.2, "spam","nonspam"))

� We find the variable that best separate our outcome

� Divide the data on into two groups based on this variable

� Within each split, find the variable that separates outcomes the best

� Continue until the groups are too small

Why not to do this multiple times?

� Bootstrap sample

� At each split randomly select n variables

� Grow multiple trees and vote

� Pros: Extremely high accuracy

� Cons: Computationally intensive, interpretability, overfit

1.5 Casuality and Machine Learning?

� ML focus on prediction out of “black-box”

� → Causality is not necessary there!

– Prediction of crime recidivism: Ethnicity or Income? see “Weapon of math de-
struction” by Cathy O’Neil

– Google flu prediction algorithm: Sensitivity to words, time variance. See ”The
Parable of Google Flu . . . ”

I run out of examples. Let’s ask ChatGPT
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� We intuitively feel that

– Machine learning predictions in the cases above are kind of funny

– Machine learning predictions may have dangerous (policy) implications e.g. less
cars to the police?

� To understand how to avoid this, we will have to understand causal relationship.
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1.6 Exercises

1. In and Out of Sample Predictions I: What is in sample errors?

2. In and Out of Sample Predictions II: What is out of Sample error?

3. Prediction study design I: Describe simple prediction study design

4. Prediction study design II: Describe Cross-Validation

5. Install R and Rstudio.

Download R from https://www.r-project.org/ and install it.

Download RStudio https://www.rstudio.com/ and install it.

6. Simple linear model: Crime rate.

# Install and call the package 'Ecdat'.

install.packages("Ecdat")

require(Ecdat)

# Use the data 'Crime'

data(Crime)

`?`(Crime)

# Plot the crime rate with respect to number of policemen

# per capita.

plot(crmrte ~ polpc, ylab = "Crime Rate", xlab = "Number of Policemen per capita",

pch = 18, data = Crime)

# Estimate simple linear relation between crime rate and

# number of policemen per capita.

lmcrime <- lm(crmrte ~ polpc, data = Crime)

summary(lmcrime)

# Plot the crime rate with respect to number of policemen

# per capita.

plot(crmrte ~ polpc, ylab = "Crime Rate", xlab = "Number of Policemen per capita",

pch = 18, data = Crime)

abline(lmcrime, col = "red")

How do you interpret this result? What are the policy implications?

7. Let’s use Machine Learning to predict Crime rate

require(Ecdat)

# Install and call the package 'randomForest' and

# 'datasets'

install.packages("randomForest")

install.packages("datasets")

library(randomForest)

library(datasets)

set.seed(239) # set seed to reproduce results

ind <- sample(2, nrow(Crime), replace = TRUE, prob = c(0.5, 0.5))

train <- Crime[ind == 1, ] # training data set

test <- Crime[ind == 2, ] # testing data set

nrow(train)

nrow(test)

rf1cr <- randomForest(crmrte ~ ., ntree = 50, data = train, importance = TRUE)

rf1cr
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varImpPlot(rf1cr, main = "Variable Importance")

lm1 <- lm(crmrte ~ density + polpc + smsa + prbarr + pctmin +

wfed, data = train)

summary(lm1)

# Out of Sample

predictedcrmrte <- predict(lm1, test)

compare <- cbind(test, predictedcrmrte)

plot(compare$crmrte, compare$predictedcrmrte, xlab = "Actual Crime Rate",

ylab = "Predicated Crime Rate")

hist(compare$crmrte - compare$predictedcrmrte)

sum((compare$crmrte - compare$predictedcrmrte)^2)/length(compare$crmrte)

8. Your Turn

� Call the package Ecdat and use the data DoctorAUS. What is the data set about?

� What is the influence of number of doctor visits (doctorco) on the number of
illness in past 2 weeks (illness)? Visualize this relation.

� Estimate a simple linear relation between the number of doctor visits and the
number of illness in past 2 weeks. Visualize regressions output.

� Make training and testing dataset based on DoctorAUS.

� Use Random Forest randomForest from package randomForest to build regres-
sion predicting the number of doctor visits on your training set.

� “Test” your model on the testing set. Plot Actual number of doctor visits against
predicted one.

� Calculate mean square error (MSE) for your testing set.

2 Recap: Statistics

2.1 Sample Variation

� Population – the set of all entities which could theoretically be observed.

� Sample – a part of the population that we observe.

� Typically we observe A but want to know something about B.

Example

We know working hours Y of person x in year t, but we want to know it for the same
(other) person next year (time) t+ 1.

� We can do it, use A to infer something about B, if we assume that they come from
the same population.

� We can look at the first observation and make conclusion.

� Perhaps, it is not best idea.

� It is better to draw a random sample from the same population.

⇒ Values are identically and independently distributed .i.i.d.
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Law of Large Numbers
If Y1, . . . , Yn i.i.d. and 0 < σ2

Y <∞ and , then Ȳ is a consistent estimator of Y.

Central Limit Theorem
If Y1, . . . , Yn i.i.d. and 0 < σ2

Y < ∞ and n is large, then the distribution of Ȳ approxi-
mates a normal distribution

library(Ecdat)

data(Workinghours)

# Make sample of 'hours'

s1 <- sample(Workinghours$hours, 100, replace = TRUE)

str(s1)

## int [1:100] 735 0 0 1312 1928 1348 2783 920 911 0 ...

# Make 1000 samples of 'hours' of size 100

n100 <- replicate(1000, mean(sample(Workinghours$hours, 100,

replace = TRUE)))

require(ggplot2)

require(ggthemes)

require(reshape2)

ggplot(melt(data.frame(n100)), aes(x = value, fill = variable)) +

geom_density(alpha = 0.25) + theme_tufte() + xlab("Average Working Hours") +

ylab("Density")
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0.003

0.004

1000 1200 1400
Average Working Hours

D
en

si
ty variable

n100

n300 <- replicate(1000, mean(sample(Workinghours$hours, 300,

replace = TRUE)))

n900 <- replicate(1000, mean(sample(Workinghours$hours, 900,

replace = TRUE)))

n2700 <- replicate(1000, mean(sample(Workinghours$hours, 2700,

replace = TRUE)))

ggplot(melt(data.frame(n100, n300, n900, n2700)), aes(x = value,

fill = variable)) + geom_density(alpha = 0.25) + theme_tufte() +

xlab("Average Working Hours") + ylab("Density")
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Standard Deviation

sd =

√∑i=1
n (xi−x̄)2

n−1

s100 <- sample(Workinghours$hours, 100, replace = TRUE)

s300 <- sample(Workinghours$hours, 300, replace = TRUE)

s900 <- sample(Workinghours$hours, 900, replace = TRUE)

s2700 <- sample(Workinghours$hours, 2700, replace = TRUE)

sqrt(sum((s100 - mean(s100))^2)/99)

## [1] 841.4578

sd(s100)

## [1] 841.4578

sd(s300)

## [1] 888.9162

sd(s900)

## [1] 874.7947

sd(s2700)

## [1] 896.1815

sd100 <- replicate(1000, sd(sample(Workinghours$hours, 100, replace = TRUE)))

sd300 <- replicate(1000, sd(sample(Workinghours$hours, 300, replace = TRUE)))

sd900 <- replicate(1000, sd(sample(Workinghours$hours, 900, replace = TRUE)))

sd2700 <- replicate(1000, sd(sample(Workinghours$hours, 2700,

replace = TRUE)))
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ggplot(melt(data.frame(sd100, sd300, sd900, sd2700)), aes(x = value,

fill = variable)) + geom_density(alpha = 0.25) + theme_tufte() +

xlab("Standard Deviation of Working Hours") + ylab("Density")
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Standard Error of the Mean

se = sd√
n−1

sd(s100)/sqrt(length(s100) - 1)

## [1] 84.56969

sd(s300)/sqrt(length(s300) - 1)

## [1] 51.40735

sd(s900)/sqrt(length(s900) - 1)

## [1] 29.17604

sd(s2700)/sqrt(length(s2700) - 1)

## [1] 17.25022

se100 <- replicate(1000, sd(sample(Workinghours$hours, 100, replace = TRUE))/sqrt(99))

se300 <- replicate(1000, sd(sample(Workinghours$hours, 300, replace = TRUE))/sqrt(299))

se900 <- replicate(1000, sd(sample(Workinghours$hours, 900, replace = TRUE))/sqrt(899))

se2700 <- replicate(1000, sd(sample(Workinghours$hours, 2700,

replace = TRUE))/sqrt(2699))

ggplot(melt(data.frame(se100, se300, se900, se2700)), aes(x = value,

fill = variable)) + geom_density(alpha = 0.25) + theme_tufte() +

xlab("Standard Error of Average Working Hours") + ylab("Density")
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Central Limit Theorem
If Y1, . . . , Yn i.i.d. and 0 < σ2

Y < ∞ and n is large, then the distribution of Ȳ approxi-
mates a normal distribution

Confidence intervals
Upper 95% limit = x̄+ 1.96 · se
Lower 95% limit = x̄− 1.96 · se

mean(s100) - 1.96 * sd(s100)/sqrt(length(s100) - 1)

## [1] 1251.433

mean(s100) + 1.96 * sd(s100)/sqrt(length(s100) - 1)

## [1] 1582.947

mean(s2700) - 1.96 * sd(s2700)/sqrt(length(s2700) - 1)

## [1] 1084.962

mean(s2700) + 1.96 * sd(s2700)/sqrt(length(s2700) - 1)

## [1] 1152.583
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Table 3: Error Types

Null Hypothesis, H0

Valid Invalid

Judgement of H0
Reject

False Positive
(Type Error I)

Correct Inference

Fail to Reject Correct Inference
False Negative
(Type Error II)
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Distribution of Means 
 for two sample sizes

Note: The exact confidence interval is slightly different since we have to correct for the fact that

we sample from larger sample.

2.2 Hypothesis Testing

1. Formulate Null-Hypothesis e.g. means is zero. H0 : E(Y ) = µY,0

2. Formulate alternative hypothesis:

� H1 : E(Y ) 6= µY,0. (Two-sided test)

� H1 : E(Y ) > µY,0. (One-sided test)

� H1 : E(Y ) < µY,0. (One-sided test)

What can happen then?

� α, significance level – predefined probability of rejecting H0 despite it being true, typically
5%.

� k – predefined probability of failing to reject H0 when it is false.

� (1-k), power – predefined probability of rejecting H0 when it is false, typically 80%

P-Value

� Level of significance – Predefined probability of rejecting the null hypothesis, despite
it being true.

� P-value – Probability of drawing a sample that is at least as averse to the null hy-
pothesis as our data given that the null hypothesis is true.
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Figure 1: The casual effect of treatment on outcomes.

Example

� H0: Coin is fair, qT = qH = 0.5

� H1: Heads are more likely, qH > 0.5

� We observe 3 heads out of 4 throws.

� p = 4!
3!·1! · (0.5)3 · 0.5 = 0.25

� and more averse case p = 4!
4!·0! · (0.5)4 = 0.0625

� p-value= 0.3125

binom.test(3, 4, p = 0.5, alternative = c("greater"))

##

## Exact binomial test

##

## data: 3 and 4

## number of successes = 3, number of trials = 4, p-value = 0.3125

## alternative hypothesis: true probability of success is greater than 0.5

## 95 percent confidence interval:

## 0.2486046 1.0000000

## sample estimates:

## probability of success

## 0.75

3 Casual Inference

3.1 Fundamental Problem of Casual Inference

Road Not Taken

“Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;
. . .
Two roads diverged in a wood, and
I took the one less traveled by,
And that has made all the difference.”

Robert Frost, 1920

� T - treatment e.g. educational program

� Y - outcome e.g. reading level

� Ti = 1 – if person i is under treatment

� Ti = 0 – if person i is not under treatment
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� Yi(1) – (potential) outcome if person i is under treatment

� Yi(0) – (potential) outcome if person i is not under treatment

Yi = Yi(1)Ti + Yi(0)(1− Ti) (1)

Yi = Yi(0) + (Yi(1)− Yi(0))︸ ︷︷ ︸
Casual Effect

Ti (2)

Holland, (1986) Statistics and Causal Inference
Casual effect of Ti = 1 on unit i (relative to Ti = 0):

Yi(1)− Yi(0)

The problem: It is impossible to observe the value of Yi(1) and Yi(0) on the same unit,
therefore, it is impossible to observe the effect of Ti = 1 on unit i.

Any solutions?

� “Scientific solution” - requires the unbelievably strong assumption of homogeneity of
units, e.g., identical twins that are put under treatment and no treatment condition,
and the only difference in outcomes between them is induced by treatment.

� Statistical solution – we can hope to estimate averages and the distribution of Y(T)
at the population level to compute Average Treatment Effect (ATE):

∆ = E[Yi(1)− Yi(0)] = E[Yi(1)]− E[Yi(0)] (3)

3.2 Statistical solution

Knowing Average Treatment Effect (ATE) can be extremely useful as we can learn that
treatment, on average, improved outcomes:

� Visits to doctors reduce the number of sick people in the population ( unfortunately,
not necessarily all will recover, but still good for society).

� Educational programs improve the student’s reading ability (not necessarily all will
read equally, but still good for society).

� Training increased income on average (not necessary for all, but still welfare might
improve).

Now, we can think about how to calculate the average treatment effect:

1. Observational data. We can use observational data on the population or use samples
to infer the average treatment effect.

2. Experimental data. We can treat randomly selected people and compare them to
non-treated to infer the average treatment effect.
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3.2.1 Statistical solution: Observational Data

� Let’s think about calculating the average treatment effect if we have the population
data at hand or sample.

� For instance, we know if the person is sick and if this patient is treated by a doctor in
the population.

� We can näıvely calculate the average of the outcome conditional on the observed
“treatment” status:

E[Yi|T = 1] = E[Yi(1)|T = 1] (4)

E[Yi|T = 0] = E[Yi(0)|T = 0] (5)

� and subtract 4 from 5 to get Average Predictive Effect (APE):

π = E[Yi|T = 1]− E[Yi|T = 0] = E[Yi(1)|T = 1]− E[Yi(0)|T = 0] (6)

library(Ecdat)

data(DoctorAUS)

attach(DoctorAUS)

T <- ifelse(doctorco > 0, 1, 0) # 1 if treated by a doctor or specialist in the past 2 weeks

Y <- illness #number of illness in past 2 weeks

mean(Y[T == 1]) # average number of illnesses conditional on observed treatment by a doctor or spec.

[1] 2.125834

mean(Y[T == 0]) # average number of illnesses conditional on observed no treatment by the doctor or spec.

[1] 1.256218

mean(Y[T == 1]) - mean(Y[T == 0]) #The average predictive effect of doctor visits

[1] 0.8696158

→ The average predictive effect is positive (π ≈ 0.87 > 0): Doctor or specialist visit is
associated with more illness.

library(Ecdat)

data("VietNamI")

attach(VietNamI)

T <- ifelse(educ > 0, 1, 0) # 1 if a person got at least two years of higher education

Y <- illness #number of illnesses experienced in past 12 months

mean(Y[T == 1])

[1] 0.6150017
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mean(Y[T == 0])

[1] 0.7094727

mean(Y[T == 1]) - mean(Y[T == 0])

[1] -0.09447091

→ The average predictive effect is negative (π ≈ −0.09 < 0): Higher education is associ-
ated with less illness.

� Why do we observe it?

� We calculate this:

π = E[Yi(1)|T = 1]− E[Yi(0)|T = 0] (7)

� Yet,

E[Yi(1)|T=1] 6= E[Yi(1)] (8)

E[Yi(0)|T=0] 6= E[Yi(0)] (9)

3.2.2 Statistical solution: Experiment

� Now, I can decide to assign people to the treatment and control groups randomly.

� Random assignment guarantees that treatment T is independent from potential out-
come Y . T |= Y

� T |= Y ⇒ E[Yi(1)|T=1] = E[Yi(1)]⇒

∆ = E[Yi(1)] − E[Yi(0)] = E[Yi|Ti = 1] − E[Yi|Ti = 0] (10)

∆ = π (11)

STAR Experiment: Does reducing class size improve educational outcomes?
Over 7,000 students in 79 schools were randomly assigned to one of three interventions:

� regular class (22 to 25 students per teacher)

� small class (13 to 17 students per teacher),

� regular-with-aide class (22 to 25 students with a full-time teacher’s aide)

� For simplicity, we will focus on regular classes and small class intervention

STAR Experiment: Does reducing class size improve educational outcomes?

0 regular class (22 to 25 students per teacher)

1 small class (13 to 17 students per teacher),
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Table 4: Control Group: Regular Class

Statistic N Mean St. Dev.

Girls 4,085 0.479 0.500
Caucasian 4,075 0.645 0.479
African-American 4,075 0.351 0.477
Other Ethnicity 4,075 0.004 0.064

Table 5: Treatment Group: Small Class

Statistic N Mean St. Dev.

Girls 1,915 0.500 0.500
Caucasian 1,913 0.685 0.465
African-American 1,913 0.308 0.462
Other Ethnicity 1,913 0.006 0.079

� Let’s say we are interested in the reading abilities of students in grade 3

� Specifically, we want to know if reducing class improves reading.

� But before, let’s look at how basic demographic characteristics of students are dis-
tributed across groups.

library(AER)

data(STAR)

STAR3 <- subset(STAR, star3 != c(" regular+aide") & !is.na(STAR$read3) &

!is.na(STAR$star3))

T <- ifelse(STAR3$star3 == "small", 1, 0) # 1 if student is in the small class treatment group

Y <- STAR3$read3 #total reading scaled score in 3rd grade.

mean(Y[T == 1])

[1] 621.0757

mean(Y[T == 0])

[1] 612.7576

mean(Y[T == 1]) - mean(Y[T == 0])

[1] 8.318068
Now, we can assess significance of this difference with t-test:

t.test(Y ~ T)

##

## Welch Two Sample t-test
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##

## data: Y by T

## t = -7.7229, df = 3621.6, p-value = 1.461e-14

## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0

## 95 percent confidence interval:

## -10.429778 -6.206358

## sample estimates:

## mean in group 0 mean in group 1

## 612.7576 621.0757

Assumptions of Regression (OLS):

1. Strict exogeniety, E(ui|Ti = t) = 0

2. (Ti, Yi) are identically independently distributed (i.i.d.)

3. Large outliers are rare

4. var(u|T = t) is constant

5. u is normally distributed, u ∼ N (0, σ2)

Assumptions of Regression (OLS):

1. Strict exogeniety, E(ui|Ti = t) = 0 X

2. (Ti, Yi) are identically independently distributed (i.i.d.)

3. Large outliers are rare

4. var(u|T = t) is constant

5. u is normally distributed, u ∼ N (0, σ2)

X by randomization, n is large

Similarly with regression:

summary(lm(Y ~ T))

##

## Call:

## lm(formula = Y ~ T)

##

## Residuals:

## Min 1Q Median 3Q Max

## -113.758 -27.758 -1.076 26.242 162.242

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 612.7576 0.6004 1020.584 < 2e-16 ***

## T 8.3181 1.0628 7.827 5.87e-15 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 38.37 on 5998 degrees of freedom

## Multiple R-squared: 0.01011,Adjusted R-squared: 0.009945

## F-statistic: 61.26 on 1 and 5998 DF, p-value: 5.869e-15
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� Let’s recall that we know the characteristics (W ) of students e.g. gender. Can we
include them?

Assumptions:

1. Strict exogeniety, E(ui|Ti = t) = 0

2. (Ti, Yi) are identically independently distributed (i.i.d.)

3. Large outliers are rare

4. var(u|T = t) is constant

5. u is normally distributed, u ∼ N (0, σ2)

6. No perfect multicollinearity X

X by randomization. Moreover, T |= Y,W ⇒

E[Yi(T )|W ] = E[Yi|Ti,W ], Ti ∈ {0, 1} ⇒

∆(W ) = π(W )

Table 6: Outcomes of STAR project in Grade 3

Dependent variable:

Y - Reading score

(1) (2) (3) (4)

T - Small Class 8.318∗∗∗ 8.156∗∗∗ 7.982∗∗∗ 7.477∗∗∗

(1.063) (1.058) (1.062) (1.031)
Girl 7.567∗∗∗ 7.525∗∗∗ 7.598∗∗∗

(0.987) (0.992) (0.962)
Teachers Experience (Years) −0.013 0.099∗

(0.057) (0.056)
Sub-urban School 20.294∗∗∗

(1.434)
Rural School 24.702∗∗∗

(1.287)
Urban 20.165∗∗∗

(2.056)
Constant 612.758∗∗∗ 609.134∗∗∗ 609.500∗∗∗ 589.820∗∗∗

(0.600) (0.762) (1.113) (1.480)

Observations 6,000 6,000 5,951 5,951
R2 0.010 0.020 0.019 0.078
Adjusted R2 0.010 0.019 0.019 0.077

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

I. Shall we include these characteristics (W ) – covariates?

� Let’s note that

– Standard errors in model 4 are slightly lower than in model 1.

– R2 or Adjusted R2 is larger in the model 4 than in model 1.
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� Covariates in randomized experiments is “denoising”, improving the precision of esti-
mation of Average Treatment Effect.

� Yet, which one to include and which not, especially if I have a lot more than people
e.g. W >> i?

→ Here, Machine Learning tools will help us. We will study this in the first part
of“Modern High Dimensional Linear Regression”

II. Treatment Heterogeneity.

� Let’s note that

– Treatment (small class) increases the reading score by 8 points on average.

* Average treatment effect (ATE) ≈ 8.

– It is comparable to the gender gap in reading: Girls get 8 points more than boys.

* Average predictive effect (APE) ≈ 8.

� Nice, could it be that the treatment helps to close the reading gender gap by being
particularly helpful to boys?

� We can check it by estimating the interaction effect of treatment on boys (B):

� Y = β0 + βTT + βBB + βT ·BT ·B + ui

� But could it be that while it is particularly useful for boys in rural areas

� Y = β0 + βTT + βBB + βRR+ βT ·BT ·B + βR·BR ·B + βT ·B·RT ·B ·R+ ui

� What about the income level of the parents, and the education of the mother, low
achieving girls in grade 3?

� . . .

� We can continue this exercise till infinity (or sample size).

� Increasing the number of hypotheses till infinity (or sample size) and shrinking our
analysis to a subgroup of one person i.

� What can we do about it?

� We can explore heterogeneity in the systematic agnostic way with the help of machine
learning.

� We will study this in the second part of ”Modern High-Dimensional Linear Regression”

3.3 Summary

� Fundamental problem of Casual Inference: We can not observe the same person under
treatment and not in the same time

� Statistical solution: Look at the groups of people and compare averages to calculate
Average Treatment Effect (∆).

– Observational. Average Predictive Effect (π), yet, π 6= ∆

– Experimental. Average Treatment Effect (∆) and π = ∆

� We collect a lot of characteristics (W ) about people (i) so that W >> i

– Here machine learning can help us to learn more.
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3.4 Exercises

1. Sample Variation I: What is population?

2. Sample Variation II: What is sample?

3. Sample Variation III: What is the difference between standard deviation and stan-
dard error of the mean?

4. Sample Variation IV: Here are two tables of error types:

Table 7: Inferential Statistics: Error Types

Null Hypothesis, H0
Valid Invalid

Judgement of H0
Reject False Positive Correct Inference
Fail to Reject Correct Inference False Negative

Table 8: Prediction Study: Error Types

Predicted Value, Ŷ
Positive Negative

Actual Value, Y
Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

� What is the key differences between them? Do they contradict each other?

� When is it useful to use one approach, and when the other?

� Give examples to use each way of thinking for economic problems.

5. Hypothesis Testing I:

� The average interview callback rate is 8% e.g., Bertrand, M. and Mullainathan, S.,
2004.

� You send ten resumes and applications and get one callback.

� How likely are you to observe this outcome given that your resume is not worse than
average?

� How likely are you to observe this outcome or worse, given that your resume is not
worse than average?

� Calculate the p-value by formula and with simple binom.test().

� Formula of binomial probability: p = n!
n!x! (q)

xqn−x, where q is the probability of success
on a single trial, x -number of success, n - number of trials.

6. Hypothesis Testing II:

� Call the package AER and use the data ResumeNames. What is it about?

� Calculate the average rate of callback.

� Calculate the rate of callback for applicants with afro-american sounding names. Use
subset() function.

� Test with binom.test() that applicant with afro-american sounding names is less
likely to receive the callback than the average applicant.

� Test with binom.test() that applicant with afro-american sounding names is less or
more likely to receive the callback than the average applicant.
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� Turn call variable to binary variable that takes 1 if ”yes” with ifelse() function.

� Use regression (lm()) to test if an afro-american applicant is equally likely to receive
the call as a caucasian applicant.

1. Causal Inference I: What is the fundamental problem of causal inference?

2. Causal Inference II: What are the two solutions proposed?

3. Causal Inference III: What is an average predictive effect (APE)?

4. Causal Inference IV: What is the average treatment effect (ATE)?

5. Causal Inference V: When APE and ATE is equal?

6. Statistical Solution I:

� Call the package AER and use the data ResumeNames.

� Check the variables. For which variables you can assume that ATE is equal to APE
in predicting callback?

� Turn call variable to binary variable that takes 1 if ”yes” with ifelse() function.

� Use regression (lm()) to test how ethnicity, gender, and industry is associated with
callback. Interpret your results.

7. Statistical Solution II: What predicts callback? or How to make a fictitious
CV to get a callback?;)

� Call the package AER and use the data ResumeNames.

� Split the dataset in training and testing set.

� Build a model on your training set with regression.

� Use function predict(...type="response") to predict callback on your testing set.

� Calculate your accuracy rate.

� Calculate your mean square error.

� Find a way to improve the prediction.

� Hint 1: Use ifelse() function to turn probabilities into binary outcomes.

� Hint 2: You can find your threshold level based on predictions.

� Hint 3: You can re-run the code many times.

� Hint 4: Consider using randomForest for variable selection once you setup the model.
Re-run the code many times.
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4 Modern High Dimensional Linear Regression

4.1 Framework

� Consider the following regression framework for outcome Y :

Yi = β′X + ui,

� Where X - is a vector of regressors x, X = (xj)
p
j=1.

– Data have large dimensional features (many variables)

– We construct many technical regressors from raw regressors e.g. x2
j , log xj , xk ·xm

etc.

– or both

� In other words: p >> i

� X can be country characteristics, product characteristics, individual health information
in electronic health records, participants of experimental study characteristics at the
baseline etc.

� With non-linear regressions and more variables we have more flexibility:

→ We improve prediction

� For example, consider higher degree polynomial.

require(Ecdat)

data(Wages)

attach(Wages)

exp2 <- exp * exp

exp3 <- exp * exp * exp

exp4 <- exp * exp * exp * exp

or <- order(exp)

plot(lwage ~ exp, ylab = "log (Wage)", xlab = "Experience")

lines(exp[or], fitted(lm(lwage ~ exp))[or], col = "red", lwd = 2)

lines(exp[or], fitted(lm(lwage ~ exp + exp2))[or], col = "yellow",

lwd = 2)

lines(exp[or], fitted(lm(lwage ~ exp + exp2 + exp3))[or], col = "green",

lwd = 2)

lines(exp[or], fitted(lm(lwage ~ exp + exp2 + exp3 + exp4))[or],

col = "blue", lwd = 2)

legend("topleft", c("linear", "quadratic", "cubic", " quartic"),

lwd = 3, col = c("red", "yellow", "green", "blue"), cex = 0.6)
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library(AER)

data("ResumeNames")

ResumeNames$callb <- ifelse(ResumeNames$call == "yes", 1, 0)

lm(callb ~ name + ethnicity, data = ResumeNames)

##

## Call:

## lm(formula = callb ~ name + ethnicity, data = ResumeNames)

##

## Coefficients:

## (Intercept) nameAnne nameCarrie nameEmily nameJill

## 0.094828 -0.012183 0.036125 -0.015532 -0.011084

## nameLaurie nameKristen nameMeredith nameSarah nameBrad

## 0.002608 0.036628 0.006777 0.003618 0.063903

## nameBrendan nameGeoffrey nameGreg nameBrett nameJay

## -0.017905 -0.027031 -0.016396 -0.027031 0.039501

## nameMatthew nameNeil nameTodd nameAisha nameEbony

## -0.005275 -0.029038 -0.036004 -0.072605 0.001326

## nameKeisha nameKenya nameLakisha nameLatonya nameLatoya

## -0.056576 -0.008093 -0.039828 -0.003523 -0.010757

## nameTamika nameTanisha nameDarnell nameHakim nameJamal

## -0.040140 -0.036857 -0.047209 -0.040282 -0.029254

## nameJermaine nameKareem nameLeroy nameRasheed nameTremayne

## 0.001326 -0.047953 -0.001078 -0.064977 -0.051349

## nameTyrone ethnicityafam

## -0.041494 NA
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library(AER)

data("ResumeNames")

ResumeNames$callb <- ifelse(ResumeNames$call == "yes", 1, 0)

lm(callb ~ ethnicity + name, data = ResumeNames)

##

## Call:

## lm(formula = callb ~ ethnicity + name, data = ResumeNames)

##

## Coefficients:

## (Intercept) ethnicityafam nameAnne nameCarrie nameEmily

## 0.094828 -0.041494 -0.012183 0.036125 -0.015532

## nameJill nameLaurie nameKristen nameMeredith nameSarah

## -0.011084 0.002608 0.036628 0.006777 0.003618

## nameBrad nameBrendan nameGeoffrey nameGreg nameBrett

## 0.063903 -0.017905 -0.027031 -0.016396 -0.027031

## nameJay nameMatthew nameNeil nameTodd nameAisha

## 0.039501 -0.005275 -0.029038 -0.036004 -0.031111

## nameEbony nameKeisha nameKenya nameLakisha nameLatonya

## 0.042821 -0.015082 0.033401 0.001667 0.037971

## nameLatoya nameTamika nameTanisha nameDarnell nameHakim

## 0.030737 0.001354 0.004638 -0.005714 0.001212

## nameJamal nameJermaine nameKareem nameLeroy nameRasheed

## 0.012240 0.042821 -0.006458 0.040417 -0.023483

## nameTremayne nameTyrone

## -0.009855 NA

� Classical linear regression or least squares fails in these high-dimensional settings.

� It overfits the data

� What to do?

� Lasso regression estimate β parameter:

minimize

i∑
i=1

(yi −
∑
j

xi,jβj)
2 + λ

p∑
j=1

|βj | (12)

� λ - penalty parameter

� Note we can find λ with cross-validation

4.2 Double Lasso Regression

� We know how to answer this question:

→ How does the predicted value of Y change if a regressor T increases by a unit, while
other regressors W remain unchanged?

� We want to answer this question:

→ How does the predicted value of Y change if intervene and increase T by a unit, while
other regressors W remain unchanged?
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� Let’s consider the effect of class size on test scores (performance of students on knowl-
edge tests):

TestScore = β0 + βCClassSize+ ε

Class Size (T) Test Score (Y)
Percent of English learners X X

Time of day of the test X
Number of parking lots X

How can we learn large that the variable is potentially a confounder?

Double Lasso

1. Run a lasso regression to select variables associated with Y .

2. Run a lasso regression to select variables associated with T .

3. Include the union of them in the regression.

� Double lasso Selection allows us to Neyman orthogonality.

� Double lasso learns both strong and weak predictors of outcome Y .

� These weak predictors of the outcome can also be strong predictors of variable of
interest T . Therefore shall be included to reduce omitted variable bias.

� Note that If we naively follow only one step lasso regression on Y or simply select the
variable that highly correlates with Y , we would drop weak predictor of Y that can
be strong predictors T

4.3 Debiased Machine Learning (DML)

The Frisch-Waugh-Lovell (FWL) Theorem allows to isolate the effect of a specific variable
in a multiple regression analysis.

� Let’s suppose we have next regression Ŷ = β̂1X1 + β̂2X2 and we are interested in β̂1.
Let’s

– Regress: ŷ∗ = γ̂1X2 and X̂1 = γ̂2X2

– Obtain residuals: X̃1 = X1 − X̂1 and ỹ1 = y − ŷ∗

– Regress residuals: ỹ = β̂1X̃1

– We will get isolated coefficient of β̂1.

x1 = rnorm(100)

x2 = rnorm(100)

y1 = 1 + x1 - x2 + rnorm(100)

r1 = residuals(lm(y1 ~ x2))

r2 = residuals(lm(x1 ~ x2))

# ols

coef(lm(y1 ~ x1 + x2))
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## (Intercept) x1 x2

## 1.0062377 0.9290603 -1.0211978

# fwl ols

coef(lm(r1 ~ -1 + r2))

## r2

## 0.9290603

� Now, recall that we might suspect non-linear relationships in our data

� But among a large set of variables we under risk of overfitting

� Yet, we want to model this nuisance parameter to properly estimate the relationship
between our variable of interest and outcomes

� Moreover, we want to model it not only for one variable but as many as could
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� Here machine learning helps.

� Machine learning allows:

– Flexible modeling e.g. capturing complicated interactions etc.

– ”well” predicting outcomes

� Thus we can use this feature to estimate the relationship of interest with help of the
Frisch-Waugh-Lovell Theorem

� Let’s suppose we are interested in Ŷ = β̂TT and we are interested in β̂T having set of
controls X. We can

– Estimate the relationship between Y and X using Machine Learning regression
model MY .

– Estimate the relationship between T and X using Machine Learning regression
model MT .

– Obtain residuals: T̃ = T −MT (X) and ỹ = y−MY (X)

– Regress the residuals of the outcome on the residuals of the treatment: Ỹ = α+τ T̃

– where τ is an approximation of our casual effect ( β̂T ).

� Using Debiased machine learning (DML) we in simplified terms combine the next
things

– Flexible modeling with Machine Learning allows us to account for the nuisance
parameter

– Frisch-Waugh-Lovell Theorem allows to use of this flexible modelling

– Double estimation reduces risk omitted variables and overfitting

� We want to estimate the relationship between (two) variables having flexibility in
modeling but avoid overfitting and reduce the risk of omitted variable bias

� Modern regression techniques - Double lasso, debiased machine learning - allows us to
do it in disciplined manner

� Key literature:

– Belloni, A., Chernozhukov, V. and Hansen, C., 2014. Inference on treatment ef-
fects after selection among high-dimensional controls. Review of Economic Stud-
ies, 81(2), pp.608-650.

– Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey,
W. and Robins, J., 2018. Double/debiased machine learning for treatment and
structural parameters.
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4.4 Exercises

1. Modern High-Dimensional Regression I: Why do we have to consider Machine
Learning in regression analysis when we want to estimate casual effect?

2. Modern High-Dimensional Regression II: What is lasso regression?

3. Modern High-Dimensional Regression III: Can we use lasso regression selecting
only on the outcome to estimate the effect of variable interest on the outcome? Why?

1. Double selection procedure I: Explain post double (lasso) selection procedure.

2. Double selection procedure II: What is the advantage of a double selection pro-
cedure if we want to estimate the average treatment effect?

3. Double selection procedure III: Suppose you can not (data does not allow, do
not know how etc.) use lasso. How can you use the knowledge about the double lasso
procedure to estimate the average treatment effect?

1. Double Debiased Machine Learning I: Explain Frisch-Waugh-Lovell Theorem?

2. Double Debiased Machine Learning II: Explain double debiased machine learning
procedure?

3. Double Debiased Machine Learning II:What are the advantages of ouble debiased
machine learning procedure compared to post-double lasso?

1. Summary: Please, give examples where you can REALISTICALLY use post-double
lasso procedure or double debiased machine learning procedure.

2. Homework I: Check for a paper in economics from a top journal that is interesting
for you. For instance: American Economic Review, Econometric, Quarterly Journal
of Economics, Journal of Monetary Economics, Review of Economic Studies

3. Homework II: Check if they have data next to the paper or allow to download data
from the open repository

4. Homework III: Restimate (some) analysis from this paper using post-double lasso
procedure and/or double debiased machine learning procedure.

5 Effect Heterogeneity and Statistical Power

5.1 Effect Heterogeneity and Statistical Power

� Consider that the effect of the treatment can be especially effective for some groups
of people

� It is good to know as we can target the treatment to these people

� We can do subgroup analysis or use interaction to find out if the treatment T works
differently for some group G e.g Y = β0 + +βTT + βGTG ∗ T + u

� If we use this approach how does it affect our chances to find true difference?

→ Recap Statistical power
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Table 9: Error Types

Null Hypothesis, H0

Valid Invalid

Judgement of H0
Reject

False Positive
(Type Error I)

Correct Inference

Fail to Reject Correct Inference
False Negative
(Type Error II)

5.2 Hypothesis Testing

1. Formulate Null-Hypothesis e.g. Difference in means is zero. H0 : E(Y ) = µY,0

2. Formulate alternative hypothesis:

� H1 : E(Y ) 6= µY,0. (Two-sided test)

� H1 : E(Y ) > µY,0. (One-sided test)

� H1 : E(Y ) < µY,0. (One-sided test)

What can happen then?

� α, significance level – predefined probability of rejecting H0 despite it being true, typically
5%.

� k – predefined probability of failing to reject H0 when it is false.

� (1-k), power – predefined probability of rejecting H0 when it is false, typically 80%

5.3 Determinants of Power

Returning to the STAR experiment.
Let’s estimate the distribution of the mean from the same population twice with different

sample sizes:

require(AER)

data("STAR")

n100s1 <- replicate(1000, mean(sample(subset(na.omit(STAR), star1 ==

"small" | star1 == "regular")$math1, 100, replace = TRUE)))

n100s2 <- replicate(1000, mean(sample(subset(na.omit(STAR), star1 ==

"small" | star1 == "regular")$math1, 100, replace = TRUE)))

n300s1 <- replicate(1000, mean(sample(subset(na.omit(STAR), star1 ==

"small" | star1 == "regular")$math1, 300, replace = TRUE)))

n300s2 <- replicate(1000, mean(sample(subset(na.omit(STAR), star1 ==

"small" | star1 == "regular")$math1, 300, replace = TRUE)))

n900s1 <- replicate(1000, mean(sample(subset(na.omit(STAR), star1 ==

"small" | star1 == "regular")$math1, 900, replace = TRUE)))

n900s2 <- replicate(1000, mean(sample(subset(na.omit(STAR), star1 ==

"small" | star1 == "regular")$math1, 900, replace = TRUE)))

Now from different populations:

n100s1sr <- replicate(1000, mean(sample(subset(na.omit(STAR),

star1 == "small")$math1, 100, replace = TRUE)))

n100s2sr <- replicate(1000, mean(sample(subset(na.omit(STAR),

star1 == "regular")$math1, 100, replace = TRUE)))
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n300s1sr <- replicate(1000, mean(sample(subset(na.omit(STAR),

star1 == "small")$math1, 300, replace = TRUE)))

n300s2sr <- replicate(1000, mean(sample(subset(na.omit(STAR),

star1 == "regular")$math1, 300, replace = TRUE)))

n900s1sr <- replicate(1000, mean(sample(subset(na.omit(STAR),

star1 == "small")$math1, 900, replace = TRUE)))

n900s2sr <- replicate(1000, mean(sample(subset(na.omit(STAR),

star1 == "regular")$math1, 900, replace = TRUE)))

plot100 <- ggplot(melt(data.frame(n100s1, n100s2)), aes(x = value,

fill = variable)) + geom_density(alpha = 0.25) + theme_tufte() +

xlab("Average Math Score") + ylab("Density") + ylim(0, 0.32) +

xlim(535, 560) + ggtitle("Same Population")

plot300 <- ggplot(melt(data.frame(n300s1, n300s2)), aes(x = value,

fill = variable)) + geom_density(alpha = 0.25) + theme_tufte() +

xlab("Average Math Score") + ylab("Density") + ylim(0, 0.32) +

xlim(535, 560)

plot900 <- ggplot(melt(data.frame(n900s1, n900s2)), aes(x = value,

fill = variable)) + geom_density(alpha = 0.25) + theme_tufte() +

xlab("Average Math Score") + ylab("Density") + ylim(0, 0.32) +

xlim(535, 560)

plot100sr <- ggplot(melt(data.frame(n100s1sr, n100s2sr)), aes(x = value,

fill = variable)) + geom_density(alpha = 0.25) + theme_tufte() +

xlab("Average Math Score") + ylab("Density") + ylim(0, 0.32) +

xlim(535, 560) + ggtitle("Diffferent Populations")

plot300sr <- ggplot(melt(data.frame(n300s1sr, n300s2sr)), aes(x = value,

fill = variable)) + geom_density(alpha = 0.25) + theme_tufte() +

xlab("Average Math Score") + ylab("Density") + ylim(0, 0.32) +

xlim(535, 560)

plot900sr <- ggplot(melt(data.frame(n900s1sr, n900s2sr)), aes(x = value,

fill = variable)) + geom_density(alpha = 0.25) + theme_tufte() +

xlab("Average Math Score") + ylab("Density") + ylim(0, 0.32) +

xlim(535, 560)

library(gridExtra)

grid.arrange(plot100, plot100sr, plot300, plot300sr, plot900,

plot900sr, ncol = 2, nrow = 3)
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tapply(na.omit(STAR)$math1, na.omit(STAR)$star1, mean)

## regular small regular+aide

## 542.3272 550.2633 544.4835

mathreg <- replicate(1000, mean(sample(subset(na.omit(STAR),

star1 == "regular")$math1, 900, replace = TRUE)))

mathaid <- replicate(1000, mean(sample(subset(na.omit(STAR),

star1 == "regular+aide")$math1, 900, replace = TRUE)))

mathsma <- replicate(1000, mean(sample(subset(na.omit(STAR),

star1 == "small")$math1, 900, replace = TRUE)))

ggplot(melt(data.frame(mathreg, mathaid, mathsma)), aes(x = value,

fill = variable)) + geom_density(alpha = 0.25) + theme_tufte() +

xlab("Average Math Score") + ylab("Density")
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mathsma

ggplot(melt(data.frame(mathreg, mathaid)), aes(x = value, fill = variable)) +

geom_density(alpha = 0.25) + theme_tufte() + xlab("Average Math Score") +

ylab("Density") + geom_vline(xintercept = 543, linetype = 3) +

geom_vline(xintercept = 544, linetype = 2)
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var(subset(na.omit(STAR))$math1)

## [1] 1555.032

var(subset(na.omit(STAR))$read1)

## [1] 2731.149

mathreg <- replicate(1000, mean(sample(subset(na.omit(STAR),

star1 == "regular")$math1, 900, replace = TRUE)))

mathsma <- replicate(1000, mean(sample(subset(na.omit(STAR),

star1 == "small")$math1, 900, replace = TRUE)))

readreg <- replicate(1000, mean(sample(subset(na.omit(STAR),

star1 == "regular")$read1, 900, replace = TRUE)))

readsma <- replicate(1000, mean(sample(subset(na.omit(STAR),

star1 == "small")$read1, 900, replace = TRUE)))

plotmath <- ggplot(melt(data.frame(mathreg, mathsma)), aes(x = value,

fill = variable)) + geom_density(alpha = 0.25) + theme_tufte() +

xlab("Average Math Score") + ylab("Density")

plotread <- ggplot(melt(data.frame(readreg, readsma)), aes(x = value,

fill = variable)) + geom_density(alpha = 0.25) + theme_tufte() +

xlab("Average Reading Score") + ylab("Density")

grid.arrange(plotmath, plotread)
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powerfraction <- function(P) {
n <- 300

sesma <- sd(replicate(100, mean(sample(subset(na.omit(STAR),

star1 == "small")$math1, n * P, replace = TRUE))))/sqrt(n *

P - 1)

sereg <- sd(replicate(100, mean(sample(subset(na.omit(STAR),

star1 == "regular")$math1, n * (1 - P), replace = TRUE))))/sqrt(n *

(1 - P) - 1)

as.data.frame(cbind(sesma, sereg, sesma + sereg))

}
powerfraction(0.4)

## sesma sereg V3

## 1 0.3221651 0.2145788 0.5367439

dd <- sapply(c((1:9)/10), powerfraction)

par(mfrow = c(1, 2))

plot(c((1:9)/10), dd[1, ], type = "l", col = "red", lwd = 3,

xlab = "Allocation Fraction", ylab = "Standard Error of the Mean",

ylim = c(0, 1.5))

lines(c((1:9)/10), dd[2, ], lwd = 3)

plot(c((1:9)/10), dd[3, ], type = "l", lwd = 3, xlab = "Allocation Fraction",

ylab = "Sum of Standard Errors of the Mean", col = "grey",

ylim = c(0, 1.5))

abline(v = 0.5)
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5.4 Algebra of Determinants of Power

5.4.1 Individual Level Randomization

Y = β0 + βTT +
∑k
i=1 βCiCi + u

Variance

V ariance(β̂T ) = 1
P (1−P )

σ2

N

, where N – number of observations; σ – standard error term; P – allocation fraction

Critical Value, tα/2

Φ(tα/2) = 1− α/2

, where φ is standard normal cumulative distribution function; α – significance
level.

We can reject the Null-hypothesis if |β̄T |
SE(β̂T )

> tα/2

Minimum Detectable Effect Size

MDE = (t(1−k) + tα/2)×
√

1
P (1−P ) ×

√
σ2

N

Power

1− k = Φ([MDE ×
√
P (1− P )×

√
N
σ2 ]− tα/2)

So, we see:

� More observations(N) more power

� Higher MDE gives higher power

� Lower tα/2 or significance level gives higher power

� Smaller variance gives higher power

� Power is maximized if P = 0.5
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5.4.2 Group Level Randomization

Yi,j = β0 + βTT +
∑k
i=1 βCiCi + vj + wi,j

, where vj – shocks at cluster(group) level which we assume to be i.i.d. with variance τ2,
wi,j – shocks at individual level within a cluster wi,j , which we assume to be i.i.d. with
variance σ2

If ρ = τ2

τ2+σ2 – intercluster correlation ⇒

Minimum Detectable Effect Size

MDE =
t(1−k)+tα/2√

P (1−P )
×
√
ρ+ 1−ρ

n σ

,where n – cluster size.

5.5 Interaction or subgroup analysis

� We often want to investigate interaction effects e.g. effect is stronger for women than
men etc. However, it is natural to assume that the effect of the interaction is smaller
than the main effect.

� Indeed, the median absolute magnitude of the interactions in their re-analysis is 0.065
s.d., or 37% of the size of the main treatment effects. (Muralidharan et al., 2019)

� Thus, we have to have even larger dataset to do subgroup analysis.

� Moreover, we increased number of hypothesis further reducing statistical power as we
have to correct for multiple hypotheses testing

� How Machine Learning can help?

5.5.1 Effect Heterogeniety with Machine Learning

� A. Use machine learning tools e.g. Random Forest to explore treatment heterogenity
in systematic way.

� B. Use predictions from ML to estimate the treatment effect by groups.

→ Generic Machine Learning Chernozhukov et al. (2018), Policy Tree (Athey and Wager,
2021) See next section.

5.6 Exercises

1. Hypothesis Testing: Explain type error I and type error II. Explain significance
level and power. Why typically in empirical analysis we talk about significance level
but not power?

2. Power I: What is power of the statistical test? What is the typical power level one
should choose? What are the advantages and disadvantages of higher power level?

3. Power II: What are the key five factors that determines the power of the study? In
which direction?

4. Power III: If you use group level randomization, is it better to have small or big
clusters?

5. Power IV: One can determine Minimum Detectable Effect Size. Which way would
you choose?

6. Power V: How to choose residual variance for your study? Can you use data at hand?
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7. Power and interactions I: Do you think it is required to have larger sample size to
provide heterogeneity analysis? Why?

8. Power and interactions II: Do you think typically the effect size for interaction is
larger or smaller than the main treatment effect?

9. Power and interactions III: You study in a randomized control trial if response
to request about donation vary across people of different ethnicity: In the treatment
group you emphasize the importance of donation for others; In the control group you
just ask to donate. You provide statistical analysis of the whole sample and do not
find any difference between control and treatment group. When, however, you provide
an subgroup analysis of 100 ethnic groups, you find that some group is less likely to
donate if they were treated and you can reject the null-hypothesis at 5% level providing
simple t-test for this group (p-value= 0.0467). What will be your conclusion and how
would you summarize the results?

6 Exploring Effect Heterogeneity with Machine Learn-
ing

6.1 Motivation

� We often want to see if the treatment effect varies by characteristics such as gender,
age, income, etc.

� Understanding subgroup-specific effects aids in targeting treatments more effectively.

� However, we saw that analyzing sub-groups in a disciplined manner can be demanding
from a statistical power perspective (small effect size, large samples, but we have
sub-sample, etc.)

� Moreover, having many hypotheses tested increases the false positive rate (which can
also decrease power ) and has to be accounted for systematically.

� We cover next ML methods to adress it: (1) Casual Forest; (2) Generic Machine
Learning; (3) Optimal Policy Tree

6.2 Casual Forest

� Let’s suppose we have a randomly assigned treatment, T.

� We get used to estimate ŷ (T, x) = E [Yi|Ti, Xi] using Machine Learning or other
methods

� Idea!

� Instead of predicting ŷ (T, x), we predict the mean difference τi in Y across treatment
groups T , building decision trees for different variables X.

� Algorithm aims at generating variables value-specific subgroups in a way that mini-
mizes the sum of squared residuals in effect estimation (rather than outcome Y pre-
diction).

� We aim to maximize within-group effect homogeneity or inter-group effect heterogene-
ity based on values of X.

� Honest prediction: use one set of observations to build the tree structure and another
to generate predictions of effects within subsets.

42



Conditional Average Treatment Effect (CATE):

E [τi|Xi] := E [Yi (1)− Yi (0) |Xi]

= E [Yi|Xi, Ti = 1]− E [Yi|Xi, Ti = 0]

Adjust the criterion:

min

n∑
i=1

(τ (Xi)− τi)2 ⇐⇒ max

n∑
i=1

τ (Xi)
2

Predicting outcomes vs. treatment effects
Typically, we use ML to Predict
Outcome

Now we want to predicting treat-
ment effects

Target: ŷ (x) = E [Yi|Xi = x] Target: τ (x) = E [τi|Xi = x]
⇒ ⇒
Criterion:

minE
[
(ŷ (x)− Yi)2 |Xi = x

] Criterion:

minE
[
(τ (x)− τi)2 |Xi = x

]
{Yi, Xi}ni=1 {τi, Xi}ni=1

Causal (Random) Forest Algorithm

1. We predict using the Random Forest Algorithm:

� Y with a set of variables of X

� T with a set of variables of X

2. We calculate residuals using prediction from 1

3. We use a random forest to predict the effect of T’s residuals on Y’s residuals, based
on X. This involves averaging over numerous causal trees, which model effect hetero-
geneity with a tree structure and estimate treatment effects within subsets.

In short: We use (a) splitting and paratilling out to control for important confounders
(see previous Modern High Dimensional Linear Regression) and (b) the causal tree approach
for finding effect heterogeneity.

6.3 Generic Machine Learning

6.3.1 Generic Machine Learning Inference

Instead of estimating the Conditional Average Treatment Effect, we can:

1. Test if heterogeneity is present in treatment effect τ

2. If heterogeneity is present, we shall see the predicted outcomes interact with the treat-
ment effect

3. See the average characteristics of the units in the most and least affected groups.

In other words, we estimate:

1. Best linear predictor (BLP) of Conditional Average Treatment Effect using ML

2. Group Average Treatment Effects (GATES) sorted by the groups induced by ML
prediction
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3. Classification Analysis (CLAN): Average characteristics of the units in most and least
affected groups

The approach is generic in the sense we are flexible which Machine Learning approach
we use.

Generic Machine Learning Inference Element 1: Best linear predictor (BLP)

� To estimate the Best linear predictor (BLP), we estimate:

Y = a0 + aB(X) + β1(T − p(X)) + β2(T − p(X))(S(X)− E[S(X)]) + ε

– B(X) - baseline effect conditional on the covariates X.

– T - treatment assignment, p(X) propensity score, the weights are 1
p(X)(1−p(X)) ,

– S(X) - treatment effect - the difference between the predicted control group
outcome and the outcome in the treated group.

– Note Recall simple regression with interaction term to get intuition about inter-
pretation of coefficients: Y = β0 + +βTT + βGTG ∗ T + u

� β2 - is the key coefficient we are interested for heterogeneity

� S(X) is perfect proxy/predictor → β2 = 1

� S(X) is complete noise → No (observed) heterogeneity, β2 = 0,

� S(X) is its relevant predictor → β2 6= 0, we see heterogeneity

– Thus, empirically rejecting the null hypothesis that β2 = 0 suggests heterogeneity
and S(X) is a relevant predictor

Generic Machine Learning Inference Element 2: Group Average Treatment
Effects (GATES)

� Now, we can estimate the treatment effect (on the hold-out sample)

� The sample is divided into k-quantiles based on the predicted treatment effect S(X)
distribution.

� K-quantiles correspond to the N% units sorted by the predicted outcome, typically
quartiles (four groups).

Y = a0 + α1B(X) +

4∑
k=1

γk(T − p(X))1(Gk) + ε

� γk - quartiles of the predicted treatment effect S(X)

� Gk group defined by the quartiles of the predicted treatment effect S(X)

� For instance, for the most affectedG4, the coefficient γ4 indicates the average treatment
effect for the outcome Y.

Generic Machine Learning Inference Element 3: Classification Analysis (CLAN)

� Now, since we have the most affected and least affected groups e.g., for quartiles G1

an G4

δ1 = E[g(Y,X)|G1] and δk = E[g(Y,X)|Gk].
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� We can compare δ1 and δk based on X e.g. Gender, Age, Income

� Significant differences in covariates e.g. Gender, Ag, Income correspond to influences
of these covariates on the treatment mechanism

� For instance, average income in the least affected group is significantly lower than in
the most affected group

→ income may influence how the treatment impacts an individual.

6.3.2 Example of Generic Machine Learning Inference

� Where are nudges for immunization for measles shot the most effective?

� Analyzing part of the experiment

– Treatment: information-hub ambassador about immunization, reminders, and
increased incentives for immunization

– Control: No intervention

� The treatment is expensive. Whom to target?
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Figure 2: Best Linear Predictor. Chernozhukov et al. (2020)

Figure 3: Group Average Treatment Effects (GATES). Chernozhukov et al. (2020)

Figure 4: Classification Analysis. Chernozhukov et al. (2020)
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� If we use Generic Machine Learning to estimate (1) the Best linear predictor (BLP), (2)
Group Average Treatment Effects (GATES), and (3) provide Classification Analysis
(CLAN)

– We test agnostically if (1) heterogeneity is present, (2) see how large it is, and
(3) what potential drivers can be.

– We are flexible on which Machine Learning tools we use to discover heterogeneity.

� Note that a single estimation may not be stable; thus, we repeat the process many
times and store parameters of interest.

6.4 (Optimal) Policy Learning

6.4.1 Policy Learning

� Let’s suppose we have to allocate policy/treatment across different groups of people.

� We might give treatment not to all but to a group of people due to budget constraints,
especially if the treatment has some costs. For instance,

– Medical treatment works e.g. Vaccine, but whom to give it (first) to maximize
protection given that Vaccine is scarce

– Programs to fight unemployment can be beneficial, but whom to select from to
maximize employment chances under budget constraints.

– Having a centralized management online system improves the learning process
and outcomes in schools on average (Asanov et al., 2023), but we need to know
if the optimal policy implies establishing this system for all schools or only some
specific schools to maximize the effect under budget constraints.

� We will focus on learning how to improve average results in scenarios with two treat-
ment options based on different background factors.

� Define treatment policy π(X) as a function of covariates X.

� Example policy: medical treatment assignment, e.g., vaccination, denoted by T .

� For age 65 or older, set T = 1 (vaccination); otherwise D = 0 (no vaccination).

� Policy rule example: π(X) = I{age ≥ 65}, so π(age = 30) = 0 and π(age = 80) = 1.

� The policy may depend on one covariate (age) or several covariates X.

� Average effect of policy π(X), denoted by ∆(π(X)).

� ∆(π(X)) corresponds to the difference in mean potential outcomes:

∆(π(X)) = E[Y (π(X))− Y (0)]

= E[π(X) · (Y (1)− Y (0))]

= E[π(X)] · E[Y (1)− Y (0)]

= E[π(X) ·∆X].

� This reflects the difference between treatment and non-treatment for everyone.

� The optimal policy π∗(X) maximizes the average effect among all feasible policies,
denoted by Π, assuming a countable number of policies in this set Π:

π∗(X) = max
π∈Π

∆(π(X)). (13)
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� We define the regret function associated with treatment policy π(X), which corre-
sponds to the reduction in the average policy effect when a suboptimal policy is im-
plemented instead of the optimal one:

R(π(X)) = ∆(π∗(X))−∆(π(X)). (14)

� Finding the optimal policy among the set of feasible policies Π means that the average
policy effect is maximized and regret R is zero. This is equivalent to solving the
following maximization problem:

π∗(X) = max
π∈Π

E[2(π(X)− 1) · φ(X)]. (15)

� π∗(X) = maxπ∈ΠE[2(π(X)− 1) · φ(X)] aligns with effect heterogeneity analysis, uti-
lizing the efficient influence function φ(X), beneficial for optimal policy learning.

� Optimal policy maximization requires a balance in Conditional Average Treatment
Effect (CATE) among treated and non-treated when choosing the treatment policy
among all possible policies.

� The term (2π(X) − 1) indicates that Conditiontal Average Treatment Effect CATEs
for treated and non-treated subjects affect expectations positively and negatively, re-
spectively.

� Now, how do we estimate φ(X) using ML?

� We can estimate φ(X) by cross-validation. Recall, for instance, how we estimated λ
for lasso regression in modern high-dimensional linear regression.

� What if we have unobserved confounders in the observational study or non-perfect
compliance in the experiment?

→ Learning policies via Double Machine Learning (DML) for estimating the optimal
policy π̂∗(X)

� The regret R(π̂∗(X)) = ∆(π∗(X))−∆(π̂∗(X)) for the estimated optimal policy versus
the true optimal policy can approach zero at an optimal

√
n-rate. (Athey and Wager

2021)

� A necessary condition for these properties is that the policy space Π is not overly
complex. Namely, number of policies is finite.

6.4.2 Example of Optimal Policy Learning

� How can we improve remote online learning and educational outcomes?

� We tested light-touch interventions in 1,151 schools in Ecuador, covering more than
45,000 students in their final years of high school (Asanov et al., 2023).

� As part of the experiment, we randomly assigned schools to

– Self-Management (Control)

– Centralized Management (We add ministry personnel to the online management
system and monitoring information )

� Centralized monitoring improved subject knowledge by 0.13 SD relative to decentral-
ized management.
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Figure 5: Students learning pattern (Asanov et al., 2023).

� The size of the improvement is comparable to how much a student might learn in 71
percent of a year of business-as-usual schooling in grade 12.

� The intervention is cheap (below 60 cents per student), yet which schools shall we
target under budget constraints to maximize the policy effect?

� We run a policy tree algorithm feeding administrative data that the Ministry of Edu-
cation collects regularly and can thus use for decision-making.

� The algorithm selects a decision rule based on the average score in the school in the
national end-of-school examinations.

� The algorithm suggests using a centralized Management system for schools that score
below national end-of-school examinations.
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Figure 6: Policy tree results. Asanov et al.(2023)
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� We want to allocate policy/treatment across different groups of people.

� Policy tree agnostically considers a set of targeting policies and selects the one that
maximizes the effect.

� Policy tree brings us simple and easy-to-communicate decision rules on whom to target.

6.5 Summary

� We often want to investigate if the treatment effect varies by characteristics of interest.

– Casual trees can help us find variables based on which we observe different
treatment effect

– Generic Machine Learning can help us to see if heterogeneity exists (BLP),
how large it is (GATES), and what potentially drives it (CLAN)

– Policy learning can help us to find simple and easy-to-communicate targeting
policies/policy trees among several policies under budget constraints.
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6.6 Exercises

1. Causal Forest I: What is our target function in Causal Forest?

2. Causal Forest II: Which Criterion we use? Why?

3. Causal Forest III: What additionally we do in Casual Random Forest? What is the
advantage?

4. Generic Machine Learning I: Explain Best Linear Predictor, Group Average Treat-
ment Effects (GATES), Classification Analysis (CLAN).

5. Generic Machine Learning II: If hypothesis β2 = 0 is rejected in Generic Machine
Learning procedure. What does it imply?

6. Generic Machine Learning III: Why do we use BPL, GATES, CLAN,?

7. Generic Machine Learning IV: What do variables selected in Classification Anal-
ysis (CLAN) mean? Can we interpret variables selected in Classification Analysis
(CLAN) in causal way?

8. Generic Machine Learning V: What are the advantages of Generic Machine Learn-
ing?
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9. Generic Machine Learning VI: What is the disadvantage of Generic Machine
Learning?

10. Applications I: Give examples of using the Causal Forest in research or for a com-
pany.

11. Applications II: Give examples of using Generic Machine Learning in research or for
a company.

7 Course Summary

7.1 Machine Learning

� We can solve many prediction tasks using cross-validation.

– We can split the sample to train the model and validate the model on testing set
(many times).

– We are flexible which model (OLS, decision trees etc.) we use, but cross-
validation helps to see performance of the model in sense prediction.

� Yet, even though predictions can be useful, it is not necessary that we causal relation-
ship.

7.2 Statistical Inference

� We assume that observed sample comes from some population

� Test hypothesise a s aiming to reject the Null-hypothesis

� Thus making inference about the population

� Fundamental Problem of Causal Inference implies that we can not observe the
same unit under different conditions in the same time

� We aim to apply statistical inference - statistical solution - to circumvent this problem
on average

Calculate the Average Treatment effect (ATE)

� Unfortunately, in non-experimenal data, we often observe Average Predictive effect
(APE).

� APE6=ATE due to the endogeniety e.g. selection of participants to the program,
unbserved factors

Consult chapter 2 and 3 in ”Causal Analysis. . . ” by M. Huber

7.3 Modern High Dimensional Linear Regression

� We can account for confounders in regression analysis e.g. OLS

� Yet, which variables to select is not known.

� Moreover, in presence of many variables (many dimensions) we might not able to
properly estimate the regression at all (overfit)

� We can use double lasso procedure:
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– With the help of lasso, select the variables that strongly predict the outcome
and variable of interest.

– In this way we reduce the risk to overfit, but also account for the strong con-
founders directly (or through proxies)

� We can do more by explicitly modelling non-linearities e.g. polynomials, interactions

� We can use double debiased machine learning (DML) approach

– We use the flexibility of Machine learning to predict the outcome and variable
of interest.

– Then, with the help of the Frisch–Waugh–Lovell theorem estimate coefficient of
interest through resudiulas based on ML predictions

–

Consult chapter 4 and 5 in ”Causal Analysis. . . ” by M. Huber

7.4 Exploring effect Heterogeneity with Machine Learning

� We often want to know if the effect is particularly strong for certain group

� Yet, subgroup analysis likely to undermine the statistical power e.g. we split the
sample, interaction effect likely to be smaller than main effect, testing many hypotheses

� Testing many hypothesthe is can be particularly dangerous as we increase false dis-
covery rate

� We might use a Machine learning approach to explore heterogeneity in systematic way

� We might the use machine learning to search for the predictors of effect heterogeneity
- random casual forest

� We can test if the heterogenity is generally present, see how large is that and what
potentially drives it -generic machine learning

� We can develop predictions whom to target to maximize the effect of the policy- Policy
learning/policy tree

Consult chapter 5 in ”Causal Analysis. . . ” by M. Huber

� Causal Machine learning is growing field

� It embraces the predictive power of machine learning to get close to causal estimates

� In certain cases, the casual machine learning works wonders

� Yet, one still have to remember that wonders are built on predictions based on observ-
able factors

� So, one shall be still cautios in interpreation of results.
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7.5 Exercises

12. For the exam:

(a) Please, revisit handout

(a) Please, consult chapter 1-5 of ”Causal Analysis. . . ” by M. Huber

(b) Attempt to make double lasso estimations

1. Describe steps in standard prediction study design?

2. Is out of sample error typically equal than in sample error in prediction study?

3. What are the limitations of Machine Learning?

4. What is the fundamental problem of causal inference?

5. You get the data from the , identical twins that are put under treatment and no
treatment condition, and the only difference in outcomes between them is induced by
treatment. You find that the treatment - private school type that one of the twins
attended - is associated with higher income. Do you think you can apply these results
to general population?

6. On average, countries that spend more on education have higher GDP. Can you con-
clude that education drives economic growth?

1. Double lasso procedure selects the number of times that person takes a shower when
you study the effect of education on income. Shall you keep this variable in regression?

2. You estimate Y = β0 +βT +βXX +u regression and get βT = 2.6 for your variable of
interest T. Colleague estimated βT using Frisch–Waugh–Lovell theorem. What value
of βT she will get?

3. A Colleague of yours says that there is a highly powerful method for prediction - a
generative neural network. Do you think you can apply it in double-biased machine
learning estimations?

4. Double lasso procedure selects the number of times that person takes a shower when
you study the effect of education on income. Shall you keep this variable in regression?

5. You estimate Y = β0 +βTT +βXX+u regression and get βT = 2.6 for your variable of
interest T. Colleague estimated βT using Frisch–Waugh–Lovell theorem. What value
of βT she will get?

6. A colleague of yours says that there is a highly powerful method for prediction - a
generative neural network. Do you think you can apply it in double-biased machine
learning estimations?

7. Tell 5 determinants of statistical power.

8. Colleague of you has a theory that women with higher education and whose parents
have higher education will have higher income than man. How can you test it? What
alternative approach can you choose?

9. Casual forest selects age> 30 as a predictor that entrepreneurial program will result in
higher self-employed revenue. You, however, can not reject the null hypothesis that the
Best Linear predictor coefficient is different from the zero based on the Generic Machine
learning approach. Would you recommend targeting entrepreneurial programs for
people above 30?
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